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On complex singularities of solutions of the equation
Hux − u + up = 0
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Departamento de Matemática Aplicada, Escuela Superior de Informatica, Universidad
Complutense, 28040, Madrid, Spain
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Abstract. It has been proved recently by Bona and Li Yi (Bona J L and Li Yi A 1997 J. Math.
Pure Appl. 76 377) that solitary wave solutions of a certain class of nonlinear nonlocal equations
can be extended into the complex domain. In this paper we present an approach for the study of
singularities of such extensions. This approach is applied to the localized solutions of the equation
Hux −u+up = 0, p = 3, 4, 5 where H is the Hilbert transform. The location of the closest to real
axis singularity z = z0 was found numerically; the analysis of this type of singularity shows that
in the vicinity of z = z0 these complex extensions of solutions cannot be represented by the series

1
(z−z0)

ρ

∑∞
n=0 An(z− z0)

n, i.e. they do not correspond to some power of a meromorphic function.

1. Introduction

This paper is concerned with the nonlinear nonlocal equation

Hux − u + up = 0 p > 1 p ∈ Z (1)

where H is the Hilbert transform

Hu(x) ≡ 1

π
vp

∫ +∞

−∞

u(x ′)
x ′ − x

dx ′.

Equation (1) arises in various physical applications including lattice models with long-range
interactions [1] and the theory of ferromagnets [2]. In particular, it describes travelling wave
solutions u(x) ≡ u(ξ − ct) of the generalized Benjamen–Ono equation

ut + pup−1uξ + Huξξ = 0. (2)

In the case p = 2, equation (2) is integrable, and its soliton solutions can be described in terms
of the dynamics of poles of u(ξ, t) in the complex plane [3]. The exact solution of (1) found
in [4],

u(x) = 2

1 + x2
(3)

corresponds to the one-soliton solution of (2), and its singularities are two poles, x = ±i. The
corresponding problem concerning the singularities of solutions of (1) for p �= 2, to the best
of our knowledge, has not been studied. However, the fact that its localized solutions, i.e. the
solutions obeying the condition

lim
|x|→∞

u(x) = 0 (4)
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can be extended from the real axis into the complex domain was proved in [5]. In addition,
in [5] it was conjectured that under fairly general conditions the extensions of solutions of
the equations of such kind are meromorphic functions or fractional powers of meromorphic
functions. We note here that the search for regular ways for the analysis of singularities
of solutions of such integro-differential equations can be quite promising bearing in mind a
possible extension of the Painlevé approach to such nonlocal problems.

In this paper we study singularities of extensions into the complex domain of solutions of
type (4) of equation (1). It is known [6, 7] that a solution of (1), (4) exists as a function in R;
in what follows this solution will be denoted by Up(x) (sometimes we will omit the index p
in Up(x) assuming p > 1 to be fixed and integer valued). Below the analytical continuation
of Up(x) into the complex domain is denoted by Up(z). This paper offers an approach to the
analysis of the closest to real axis singularity of Up(z). It includes analytical and numerical
counterparts. In fact, we numerically find the location of the closest to real axis singular point
of Up(z) and show that the behaviour of Up(z) in the vicinity of this singularity does not
correspond to any power of meromorphic function. This approach also can be applied in a
more general case when the Hilbert transform in (1) is replaced by a more general Fourier
multiplier operator.

Let us now introduce the following notation. We call a singular point z = z0 of a function
ψ(z) a singularity of PP-type (‘a power of pole’), if in some vicinity of z = z0 the function
ψ(z) can be represented as a power ρ, ρ �= −1,−2, . . . of some meromorphic function which
has a simple pole at z = z0. Evidently, for noninteger ρ the point z = z0 is an algebraic or
transcendent branching point of ψ(z). In some neighbourhood of z = z0 the function ψ(z)
can be represented by the convergent series

ψ(z) = 1

(z− z0)ρ

∞∑
n=0

An(z− z0)
n. (5)

The main question we analyse in this paper, which is closely related with the mentioned
conjecture can now be formulated as follows: are all singularities of Up(z) of PP-type?

Note that, since equation (1) is nonlocal, the direct substitution of (5) into (1) (which
allows us to analyse singularities in ODE case; see [8]) cannot be applied.

2. Basic lemma

Let us define the Fourier transform pair in R by the formulae

û(λ) =
∫ ∞

−∞
u(x)eiλx dx

u(x) = 1

2π

∫ ∞

−∞
û(λ)e−iλx dλ.

Then the main tool of our approach is contained in the following lemma.

Basic lemma (I). Suppose the function u(x), x ∈ R, obeys the conditions:
(a) u(x) ∈ L1(−∞,∞);
(b) u(x) can be continued into the strip S+

γ = {0 � Im z � γ } in the complex plane in
such a way that S+

γ belongs to one sheet of u(z), and for any y, 0 � y � γ ,

lim
x→±∞ u(x + iy) = 0 (6)
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(c) u(z) has only one singular point z = z0 = x0 + iy0, y0 < γ in S+
γ , and in some

neighbourhood of the point z = z0 the function u(z) can be represented as follows:

u(z) = 1

(z− z0)ρ

[ N∑
n=0

An(z− z0)
n + r(z− z0)

]
(7)

for some ρ ∈ R; A0, . . . , AN ∈ C and r(z− z0) = o((z− z0)
N) as z → z0.

Then the asymptotics of the Fourier transform of u(z) for λ → ∞ is

û(λ) = 2πeiz0λ
N∑
n=0

Ane− iπ
2 (n−ρ)

�(ρ − n)
λ(ρ−n−1) + o(λ(ρ−N−1)e−y0λ) (8)

for noninteger ρ and

û(λ) = 2πeiz0λ

ρ−1∑
n=0

Ane− iπ
2 (n−ρ)

�(ρ − n)
λ(ρ−n−1) + o(e−y0λ) (9)

for integer ρ � 1. Here �(ξ) is Euler’s gamma-function.

The statement given above concerns a well known relation between the behaviour of a
function in the vicinity of its closest to real axis singular point and the asymptotics of its Fourier
transform for large arguments (see, for example, [9], ch 5). However, in the literature we have
failed to find this result exactly in the form we need and, therefore, we give the proof in the
appendix. The present form of the lemma allows one to operate with asymptotic expansions
for u(z) as z → z0; the residual term r(z − z0) can include ‘weak’ singularities such as
logarithmic ones. Evidently, if ρ is noninteger and u(z) is represented in the vicinity of z = z0

by series (5), then this basic lemma provides an infinite number of terms in the asymptotics of
û(λ), λ → ∞.

The basic lemma (I) admits various generalizations. We give below one more version of
this statement concerned with the case that the continuation of u(x) into the complex domain
has more than one singular point with the same imaginary part.

Basic lemma (II). Suppose that for a function u(x), x ∈ R the conditions (a) and (b) of
basic lemma (I) hold. Suppose also that in S+

γ the function u(z) has singular points z = zm,
zm = xm + i�, � < γ , m = 1, 2, . . . ,M and in some neighbourhood of the point z = zm the
function u(z) can be represented as follows:

u(z) = 1

(z− zm)ρm

[ Nm∑
n=0

A(m)n (z− zm)
n + rm(z− zm)

]
(10)

for some ρ1, . . . , ρM ∈ R, N1, . . . , NM non-negative integers, A(m)n ∈ C, n = 1, . . . , Nm and
r(z− zm) = o((z− zm)

Nm), as z → zm, m = 1, . . . ,M .
Then the asymptotics of the Fourier transform of u(z) for λ → ∞ is the sum of

contributions (8), (9) of the singular points z = zm, m = 1, . . . ,M .

The proof of this statement repeats the proof of basic lemma (I) with minor modifications.
Summarizing, under certain conditions infinitely many terms in asymptotics of Fourier

transform û(λ), λ → ∞ are determined by a few singularities of u(z). If one denotes the set
of all singularities of u(z) by Z(u), then the singularities which provide the main contribution
to the asymptotics of û(λ) belong to the set

Z
(u)
0 = {z ∈ Z(u), Im z = min

w∈Z(u),Imw>0
Imw}.
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3. Statements on the localized solution U (x)

In what follows we will apply the basic lemmas to the localized solution U(x) of the
problem (1), (4). Let us now list known results about the solution U(x) and reveal the gaps
between these results and the conditions of the basic lemmas.

The following statements about U(x) are valid:
(A) U(x) exists, is non-negative, and even [7];
(B) U(x) ∼ G/x2 as x → ±∞ and

G = lim
x→∞ x

2U(x) = 1

π

∫ ∞

−∞
Up(x) dx (11)

(see [10]).
(C) The solution U(x) can be analytically continued to some strip Sσ = {|Im z| < σ } in

the complex domain, and in this strip for any |y| < σ∫ ∞

−∞
|U(x + iy)|2 dx < ∞ (12)

(see [10]).
Evidently, (B) implies thatU(x) ∈ L1(−∞,∞). According to (C), the solutionU(x) can

be continued analytically into some strip S+
σ = {0 � Im z < σ } and in this strip condition (6)

holds. However, this strip is not ‘wide enough’ to include the singularities of U(z), even the
ones closest to the real axis, which are contained inZ(U)0 . Also, a priori we have no information
about the number of singularities in Z(U)0 .

So we assume without proof that the following statements are valid:
(D+) U(z) can be continued into the strip S+

σ+ε = {0 � Im z < σ + ε}, ε > 0 which
contain the set Z(U)0 of closest to real axis singularities of U(z), and condition (6) in S+

σ+ε \ S+
σ

remains valid;
(E+) Z(U)0 consists of a finite number of singularities zk = xk + i�, k = 1, . . . ,M .
In what follows we give a numerical justification of assumptions (D+) and (E+).

4. The idea of the method and the first term of the series (13)

Suppose now that all singularities of Z(U)0 are of PP-type, and in some neighbourhood of each
of them, z = zk , k = 1, . . . ,M the function U(z) can be represented by the series

U(z) = 1

(z− zk)ρk

∞∑
n=0

A(k)n (z− zk)
n. (13)

Let us rewrite equation (1) in its Fourier form

(|λ| + 1)Û(λ) = Ûp(λ) (14)

and calculate the asymptotics of the both parts using the basic lemma statement.
Consider the asymptotical expansion of Û (λ), λ → ∞. According to the basic lemma,

the singularity z = zk contributes to the asymptotics of Û (λ) the term

Ck(Û ; λ) = 2πe−�λeixkλ
'(ρk)∑
n=0

A(k)n e− iπ
2 (n−ρk)

�(ρk − n)
λρk−n−1. (15)

Here we introduced the symbol '(ρ) defined as

'(ρ) =
{

∞ if ρ is a noninteger

ρ − 1 if ρ is an integer.
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Completely, the asymptotics has the form

Û (λ) =
M∑
k=1

Ck(Û ; λ) + o(λ−∞e−�λ)

if all ρk are nonintegers and

Û (λ) =
M∑
k=1

Ck(Û ; λ) + o(e−�λ)

if some of ρk are integers.
Consider the asymptotics of the Fourier transform Ûp(λ). If pρ is not a negative integer,

then the function Up(z) has the same singular points as U(z), and in some neighbourhood of
z = zk the following expression holds:

Up(z) = 1

(z− zk)pρk

∞∑
n=0

B(k)n (z− zk)
n (16)

where

B(k)n =
∑

i1+i2+···+ip=m
0�ik�m

A
(k)
i1
A
(k)
i2

· · ·A(k)ip . (17)

The contribution of the singularity z = zk to the asymptotics of Ûp(λ) is

Ck(Ûp; λ) = 2πe−�λeixkλ
'(pρk)∑
n=0

B(k)n e− iπ
2 (n−pρk)

�(pρk − n)
λpρk−n−1. (18)

Finally

Ûp(λ) =
M∑
k=1

Ck(Ûp; λ) + o(λ−∞e−�λ)

if all pρk are nonintegers and

Ûp(λ) =
M∑
k=1

Ck(Ûp; λ) + o(e−�λ)

if some of pρk are positive integers. Substitute the asymptotical expansions for Û (λ) and
Ûp(λ) into (14). Due to the presence of the factors eixkλ in expressions for Ck(Û ; λ) and
Ck(Ûp; λ) the contributions of each singular point can be treated separately. The comparison
of the leading orders of both expansions yields

ρ = 1

p − 1
(19)

A0 =
(

1

p − 1

) 1
p−1

e− iπ
p−1 (20)

and the principal term of the asymptotical expansion for Û (λ), λ → ∞ is

Û (λ) = 2πλ− p−2
p−1 e−�λ

�( 1
p−1 )(p − 1)

1
p−1

M∑
k=1

eixkλ + o(λ− p−2
p−1 e−�λ). (21)

Note that the asymptotical behaviour of Û (λ) for λ → ∞ is oscillatory if Z(U)0 contains at
least one singularity with nonzero real part.
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5. Numerical solution of equation (1)

Now, let us compare the asymptotic formula (21) with the results of numerical calculation. In
order to find the solution U(x) numerically we introduced in (1) a spectral parameter, µ, via
the formula

U(x) = µ
1
p−1V (x)

so that ∫ ∞

−∞
V 2(x) dx = 1. (22)

The function V (x) satisfies the nonlinear eigenvalue problem

MV ≡ −
(

H d

dx
− 1

)
V = µV p. (23)

Solving the problem (22) and (23), we used the inverse power method (IPM) [11]. It generalizes
the well known method of computing eigenvalues of a symmetric matrix and consists in the
following iteration procedure. Given µn and Vn(x) at the nth iteration, µn+1 and Vn+1(x) at
the (n + 1)th iteration are calculated by:

(i) solving the equation

MṼn+1 = V pn (24)

followed by:
(ii) normalizing the solution

Vn+1 = Ṽn+1/‖Ṽn+1‖ µn+1 = 1/‖Ṽn+1‖

‖Ṽ ‖ ≡
[ ∫ ∞

−∞
Ṽ 2(x) dx

]1/2

.

Since the solitary wave solution is even, we reduce the initial problem to some finite interval
(0, L), where L is sufficiently large, assuming that the derivative equals zero at x = 0. Instead
of a solitary wave solution, we seek periodic solutions which either have zero derivative at
x = L (our first code; p is arbitrary; L is the half-period) or vanish at x = L (our second code;
P is odd; L is the quarter-period). We introduced a N -node grid on (0, L) for the function
V (x); the number of the nodesN was taken to be 214 = 16 384 or 215 = 32 768. At each IPM
iteration, the linear problem (24) was solved using the cosine FFT routine (the first code) or
the odd cosine FFT routine (the second code). The accuracy was controlled by comparing the
results for various values of L and N obtained by the first and second codes (for p odd). For
an additional control of the accuracy of the numerical solution, we used formula (11) and the
relation ∫ ∞

−∞
U(x) dx =

∫ ∞

−∞
Up(x) dx

which follows directly from equation (1).
We have found that the above-described algorithm converges quite rapidly and is

insensitive to the initial guess profile V0(x). An illustrative example is given in table 1,
where the values of U3(0) are presented for N = 16 384 and various values of the length L.
The first row of the table contains the results obtained by the first code (dU3(L)/ dx = 0); the
second row corresponds to the second code (U3(L) = 0). Switching to N = 32 768 does not
affect all the decimals in the table. Thus, one can admit that both the sequences approach (the
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Table 1. The values of U3(0), calculated for N = 16 384 and various values of L by means of the
first (dU3(L)/dx = 0) and the second codes (U3(L) = 0).

L = 100 L = 200 L = 400 L = 800

The first code 1.890 498 1.890 604 1.890 631 1.890 639
The second code 1.890 712 1.890 659 1.890 646 1.890 643

Figure 1. The graphs of the solutions Up(x) of the problem (1), (4). (Curve 1) p = 2 (exact
solution U2(x) = 2/(1 + x2)); (curve 2) p = 3; (curve 3) p = 4; (curve 4) p = 5. Since Up(x)
are even the graphs are depicted for x � 0 only.

Figure 2. The graphs of the Fourier transforms Ûp(λ). (Curve 1) p = 2, (Û2(λ) = 2πe−|λ|);
(curve 2) p = 3; (curve 3) p = 4; (curve 4) p = 5. Since Ûp(λ) are even the graphs are depicted
for λ > 0.

first one from above, the second one from below) the value U3(0) ≈ 1.890 64, which is exact
up to 10−5.
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Figure 3. The graphs S(λ) and straight lines S = �pλ with correspondingly adjusted coefficient
�p , p = 3, 4, 5. The black ‘tongues’ on the graphs correspond to the regions where accuracy of
numerical solution is insufficient.

The profiles of the localized solution for p = 2, 3, 4, 5 are depicted in figure 1 (since the
solutionsU(x) are even, the graphs are plotted for x > 0 only). Figure 2 represents the Fourier
transforms of these solutions. As λ → ∞, all the graphs in figure 2 decay without oscillations,
so one can expect that for p = 3, 4, 5 the set Z(U)0 consists of only a singular point that lies on
the imaginary axis, z = i�. In this case formula (21) becomes

Û (λ) = 2πλ− p−2
p−1 e−�λ

�( 1
p−1 )(p − 1)

1
p−1

+ o(λ− p−2
p−1 e−�λ). (25)

It corresponds to a one-term asymptotical expansion of U(z) in the vicinity of z = i�:

U(z) = 1

(z− i�p)
1
p−1

[
e− iπ

p−1

(p − 1)
1
p−1

+ o(1)

]
. (26)

It follows from (25) that for λ → ∞

S(λ) ≡ ln

λ− p−2
p−1 (p − 1)

1
p−1�( 1

p−1 )|Û (λ)|
2π

 ≈ −�λ.

The graphs of S(λ) for p = 3, 4, 5 are depicted in figure 3. It is clear from figure 3 that
the asymptotical relation S(λ) ≈ −�λ holds perfectly. This makes it possible to calculate
numerically the values � = �p (see table 2). The black ‘tongues’ in figure 3 indicate the
domains where the accuracy of calculation falls off; for example, for p = 3 this occurs at
S(λ) < −17 or |Û3(λ)| ∼ 10−6; the order of the latter corresponds to the accuracy of U3(x)

(see above).
A good accordance between the asymptotical formula (25) and the numerical results allows

us to suppose that the application of the basic lemma is justified in this case, and in the vicinity
of the singularity z = i� the function U(z) obeys the asymptotic formula (26).
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Table 2. The values of Up(0), G∞ ≡ limx→∞ x2Up(x) and �p for p = 2, 3, 4, 5.

p Up(0) G∞ �p

2 2.000 2.000 1.00
3 1.891 1.034 0.26
4 1.820 0.715 0.10
5 1.772 0.555 0.05

6. The sum of the series (13)

Since both ρ and pρ are noninteger, all higher-order coefficients Am of the series (5) can be
found in a similar way as the coefficient A0. Equating the coefficients which correspond to
λρ−me−�λ, m = 1, 2, . . . , of both parts of (14), after some algebra one obtains the following
recurrence relation:

Am = i

m + 1

(
Am−1 −

∑
i1+i2+···+ip=m

0�ik<m

Ai1Ai2 · · ·Aip
)
. (27)

Series (5) with the coefficientsAm,m = 0, 1, . . . can be summed explicitly. In order to do this
we note that the same formulae (19), (20), (27) will emerge while substituting series (5) into
the equation

iφz − φ + φp = 0 (28)

and equating terms with the same power (z − z0)
k−ρ , k = 0, 1, . . . . The general solution

of (28) is

φz̃(z) = (1 − e−i(p−1)(z−z̃))−
1
p−1 (29)

where z̃ ∈ C is arbitrary. Solution (29) has the singularities z = z̃+ 2πk
p−1 , k ∈ Z and all of them

are of PP-type. The fact that the coefficients of the expansion of (29) at the point z = z̃ coincide
with the coefficientsAm,m = 0, 1, . . . can be checked independently in a straightforward way.
So, in some neighbourhood of the singularity z = z0 of U(z) the following equality holds:

U(z) = (1 − e−i(p−1)(z−z0))
− 1
p−1 . (30)

Formula (30) can be continued analytically to the real axis, and for z ∈ R it should provide
a solution of (1). However, (30) does not satisfy equation (1). So, one can conclude that the
singularity z = z0 is not of PP-type.

The analytical and numerical results given above can be summarized as follows. The
localized solution U(x) of equation (1), being continued in the upper complex half-plane, has
a singularity on the imaginary axis, z = i�. In the neighbourhood of this singularity the
function U(z) can be represented by the asymptotic expansion

U(z) = 1

(z− i�)
1
p−1

[
e− iπ

p−1

(p − 1)
1
p−1

+ r(z− i�)

]
where r(z − i�) = o(1), z → i�. However, the singularity z = i� is not a singular point of
PP-type. So, the function r(z − i�) cannot be expanded in the Taylor series in z = i�. The
problem of more exact description of the behaviour of U(z) in the vicinity of the singularity
z = i� needs further investigation.
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7. Discussion: possible generalizations

The approach which we used for the analysis of the singular points of U(z) admits various
extensions. With minor modifications it can be applied to the equation

Lu = up (31)

where L is a Fourier multiplier operator

L̂u(λ) = a(λ)û(λ)

and as λ → ∞ the symbol a(λ) has the asymptotics of the form

a(λ) = λα
∞∑
m=0

0mλ
−m + o(λ−∞) α ∈ R 0m ∈ C m = 0, 1, . . . . (32)

The procedure of calculation of the coefficients Am, m = 0, 1, . . . can be algorithmized and
series (5) can be summed up numerically. Comparison of the result of this summation with a
straightforward numerical solution of (31) may give an ‘empirical’ information which may be
used for a more rigorous analysis.

Possible modifications of this approach can be generated by various versions of the basic
lemma statement. The generalization of the basic lemma to the case of expansions

u(z) =
N∑
n=0

An(z− z0)
ρn + o((z− z0)

ρN )ρ0 < · · · < ρN

allows one to take into consideration a more general class of nonlinearities, including, for
example, polynomials. Another version of the basic lemma links the behaviour of a periodic
function u(z)

u(x + T ) = u(x) (33)

near its closest to real axis singularities and the asymptotics of the higher coefficients of its
Fourier series. This makes it possible to analyse the corresponding problem for periodic
solutions in a similar way to the localized ones.
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Appendix. The proof of the basic lemma

In what follows we need the following auxiliary statement [12].

Lemma A. Let f (x), a � x � b, be a complex-valued function; 0 � a � b, b can be infinite.
Let for some λ = λ0 the integral

I (λ) =
∫ b

a

f (x)e−λx dx (A.1)

absolutely converge. Then |I (λ)| � const × e−λa , λ > λ0.
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Figure A.1. (a) the contour GR ; (b) the deformed circuit C∗.

Proof of the basic lemma. Consider the contour GR depicted in figure A.1(a), GR =
(−R,R) ∪ �+

R ∪ l+R ∪ �∗ ∪ l−R ∪ �−
R ; the path �∗ passes along two sides of the cut E and

makes a turn around the point z = z0. The integral of u(z)eiλz along GR vanishes, so∫ ∞

−∞
u(z)eiλz dz = −

∫
�∗
u(z)eiλz dz− lim

R→∞

( ∫
�+
R

+
∫
l+R

+
∫
l+R

+
∫
�−
R

u(z)eiλz dz

)
. (A.2)

Below we consider the integrals along the paths �±
R , l

±
R and �∗ consecutively. First of all we

note that (6) implies that

lim
R→∞

∫
�±
R

u(z)eiλz dz = 0. (A.3)

The following auxiliary lemma gives an estimate of the integrals along l±R . �

Lemma 1. If the conditions of the basic lemma hold, then there exists an integer number k > 0
such that

lim
R→∞

∫
l±R

u(z)eiλz dz = o(λke−γ λ). (A.4)

Proof of lemma 1. We prove (A.4) for the integral along l+R; the arguments for the integral
along l−R are the same. Consider the closed contourF = (x0, R)∪�+

R∪l+R∪l (see figure A.1(a))
where l is some path which connects points z = x0 and x0 + iγ in the complex plane, lying
entirely in a strip 0 � Im z � γ and is directed counterclockwise with respect to the singular
point z = z0. Since u(z) is analytic inside F , we have∫

l+R

u(z)eiλz dz = −
( ∫ R

x0

+
∫
�+
R

+
∫
l

u(z)eiλz

)
dz. (A.5)
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The integrals in the left-hand side of this expression converge uniformly and one can pass to
the limit R → ∞ in both parts. Using (A.3), we have

lim
R→∞

∫
l+R

u(z)eiλz dz = −
∫ ∞

x0

u(x)eiλx dx −
∫
l

u(z)eiλz dz. (A.6)

From the other side

lim
R→∞

∫
l+R

u(z)eiλz dz = e−λγ
∫ ∞

x0

u(x + iγ )eiλx dx ≡ W(λ)e−λγ . (A.7)

It follows from (A.6) that the function

W(λ) ≡
∫ ∞

x0

u(x + iγ )eiλx dx (A.8)

is defined and continuous forλ ∈ R (however, the integral in (A.8) may converge conditionally).
Evidently, W(λ) is the Fourier transform of w(x) where

w(x) =
{
u(x + iγ ) x > x0

0 x � x0
(A.9)

and, since limx→∞ u(x+iγ ) = 0 andu(x+iγ ) ∈ C∞(x0,∞),w(x) is bounded for x ∈ R. This
implies thatw(x) ∈ S ′(R) in the sense of distributions; here S ′(R) is the space of distributions
of slow growth (see [14]). This means that its Fourier transform W(λ) also belongs to S ′(R)
and there exists an integer constant k > 0 such that W(λ) = o(λk), λ → ∞. Together
with (A.7) this gives formula (A.4). Lemma 1 is proved. �

Let us turn to the integral along the path �∗. Its asymptotics for λ → ∞ is governed by
the following lemmas 2 and 3.

Lemma 2. Let �∗ be the contour shown in figure A.1(a). Then as λ → ∞∫
�∗
(z− z0)

κeiλz dz = −2πeiλz0
e−π iκ/2

λκ+1�(−κ) + O(e−γ λ) (A.10)

if κ is a noninteger, and∫
�∗
(z− z0)

κeiλz dz =
 −2πeiλz0

e−π iκ/2

λκ+1�(−κ) κ < 0

0 κ � 0
(A.11)

if κ is an integer.

Proof of lemma 2. If κ is integer, then the result (A.11) follows immediately from Cauchy’s
theorem. Let κ be a noninteger. Complete the contour �∗ with two half-lines (dashed in
figure A.1(a)) and denote this new contour by �∞. Evidently,∫
�∗
(z− z0)

κeiλz dz =
∫
�∞
(z− z0)

κeiλz dz + (e2iπκ − 1)
∫ x0+i∞

x0+iγ
(z− z0)

κeiλz dz (A.12)

where for wκ we take the main branch, wκ = |wκ |eiκArgw, − 3π
2 < Argw � π

2 . After the
transformation z = z0 − iz′/λ the integral along the contour �∞ can be calculated using the
integral representation for the gamma function [13]; this gives the first term in the left-hand
side of (A.10). After substitution z = x0 + iz′ the second integral in the left-hand side of (A.12)
can be reduced to the form (A.1) and the estimate for the residual term follows from lemma A.
This completes the proof of lemma 2. �
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Lemma 3. Let �∗ be the contour depicted in figure A.1(a) and q(z−z0) be a function analytic
in some punctured neighbourhood of z = z0 and q(z − z0) = o((z − z0)

κ) for some κ . Then
for λ → ∞ ∫

�∗
q(z− z0)e

iλz dz = o

(
e−y0λ

λκ+1

)
. (A.13)

Proof of lemma 3. The integral in (A.13) can be rewritten as follows:∫
�∗
q(z− z0)e

iλz dz = −
∫ x0+iγ

x0+i(y0+θ)
q+(z− z0)e

iλz dz

+
∫ x0+iγ

x0+i(y0+θ)
q−(z− z0)e

iλz dz +
∫
C∗
q(z− z0)e

iλz dz (A.14)

where q±(z− z0) are two branches of q(z− z0) on the sides of the cut E, θ > 0 is some small
enough number and C∗ is a circuit around the point z = z0 passed in the clockwise direction
which starts and finishes at the point z = z0 + iθ . Suppose that λ is large enough and choose
θ = λδ−1 where δ is some number, 0 < δ < 1. Applying lemma A, we have∣∣∣∣ ∫ x0+iγ

x0+i(y0+λδ−1)

q±(z− z0)e
iλz dz

∣∣∣∣ =
∣∣∣∣e−λy0

∫ γ−y0

λδ−1
q±(iw)e−λw dw

∣∣∣∣ = O(e−(y0λ+λδ)). (A.15)

To estimate the integral along C∗, we consider the two cases, κ > −1 and κ < −1, separately.

κ > −1. In this case the integrals
∫ z0+iλδ−1

z0
q±(z− z0)eiλz dz converge, and we have∫

C∗
q(z− z0)e

iλz dz = −
∫ z0+iλδ−1

z0

q+(z− z0)e
iλz dz +

∫ z0+iλδ−1

z0

q−(z− z0)e
iλz dz.

Denote

M±(λ) = sup
z∈(z0,z0+iλδ−1)

∣∣∣∣q±(z− z0)

(z− z0)κ

∣∣∣∣ . (A.16)

Since limλ→∞M±(λ) = 0,∣∣∣∣ ∫ z0+iλδ−1

z0

q±(z− z0)e
iλz dz

∣∣∣∣ =
∣∣∣∣ ∫ z0+iλδ−1

z0

[
q±(z− z0)

(z− z0)κ

]
(z− z0)

κeiλz dz

∣∣∣∣
� M±(λ)e−y0λ

∫ λδ−1

0
wκe−λw dw � M±(λ)e−y0λ

∫ ∞

0
wκe−λw dw

= M±(λ)e−y0λλ−(κ+1)�(κ + 1) = o

(
e−y0λ

λ(κ+1)

)
.

Together with (A.15) this formula gives (A.13) for the case κ > −1.

κ � −1. Let λ be large enough. Deform the circuit C∗ around z0 to that formed by two half-
circles of radia d1 = λδ−1 (upper) and d2 = λ−(1+δ/κ) (lower) connected with two transitional
paths (see figure A.1(b)). So for z ∈ C∗ ≡ C∗(λ) we have

Im z � y0 − λ−(1+δ/κ) (A.17)

and consequently

|eiλz| � eλ
−δ/κ−y0λ. (A.18)
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Since q(z− z0) = o((z− z0)
κ) and κ � −1, for z ∈ C∗(λ) there exists M1(λ) > 0 such that

|q(z− z0)| < M1(λ)(λ
−(1+δ/κ))κ . (A.19)

As λ → ∞ the valueM1(λ) → 0 and the contourC∗(λ) shrinks to the point z = z0. Evidently,
the length of C∗(λ) is majorized byM2λ

δ−1 with some constantM2 > 0 independent of λ. So
one can conclude that∣∣∣∣ ∫

C∗(λ)
q(z− z0)e

iλz dz

∣∣∣∣ � M2M1(λ)e
λ−δ/κ

(
e−y0λ

λκ

)
= o

(
e−y0λ

λκ

)
(A.20)

for λ → ∞. This completes the proof of lemma 3. �
Substituting (A.3), (A.4), (A.10), (A.11) and (A.13) into (A.2), we arrive at (8) and (9).

The basic lemma is proved.
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